eco-design of a sludge storage shed in souilly - france

industrial site, hee approach: waste treatment story

CLIENT City of Claye-Souilly

Location Claye-Souilly Project Design and build

mission Design concept and follow up

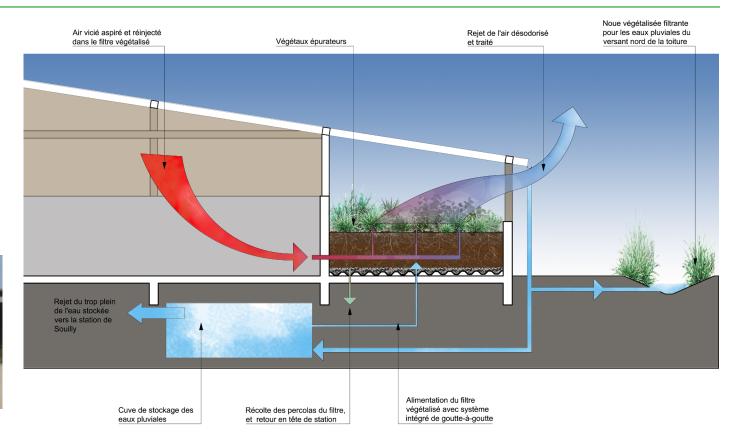
mission, architecture HQE® and

landscaping

Design and AR ARCHITECTES, Degrémont

BUILT Suez, ZUB, PINTO

area 2 500 m²


capacity 72 000m3/h (polluted air)

 cost
 1 500 000 €

 Date
 May 2011

View on the terminated project

Air treatment integrated into the sludge storage shed is partially made of reinforced concrete with partition walls 2,20m high. Above this height, a galvanised metal structure holds a larch wood cladding and translucent polycarbonate siding materials. On the south side of the works there is a green planted filter with a surface of 135 m² it treats 72 000 m3/h of polluted air coming out from the 2 500 m² storage shed.

planted filter

Polluants	Concentrations (mg/m3)	Objectifs à atteindre (mg/m₃)
Ammoniac (NH₃)	6,5	0,7
Amines (R-NH)	N.C	0,1
Hydrogène sulfuré (H ₂ S)	0,05	0,1
Mercaptans (R-SH)	0,013	0,05

N.C.: Non communiqué Board 1: Pollution treatment

Débit (m3/h)	72 000
Profondeur du lit filtrant (m)	1,1
Temps de résidence minimal de l'air dans le filtre (s)	7,425
Volume du lit filtrant (m ₃)	148,5
Surface du lit filtrant (m²)	135
Longueur du biofiltre (m)	30
Largeur du biofiltre (m)	4,5

View on the structure of the construction

Board 2: Biofiltre caracteristics

The biofiltration is a technology used to treat polluted air with high concentrations in ammoniac type (chap) (NH3) and hydrogen sulphide (H2S).

The biofiltration has many advantages comparing to chemical-physical air filtration. It is economical and ecological.

Treatment by biofiltration takes place in two stages:

- 1st stage : pollutants settles on the recovering substratum.
- 2nd stage: microorganisms biodegrades the pollutants. Plants absorb the products that serve to regulate its microbial growth.

The biofilter integrates a water management system which has two objectives:

- Irrigation and filtration of plants

Hoe® targets

Target 5: Water management

- The domestic hot water is warmed by the thermal solar panels. Its surface is 2 to 3m² A tank of storage of 300L allows to produce 100 to 150L of warm water per day, that is 100 % of the consumption of two persons. There's an economy of 300 to 450€ per year.
- The annual water consumption is estimated approximately to 300 L/m² for the irrigation, according to climatic conditions, that are approximately 40m3 per year.

Target 13: air management

- · The design of the biofilter for air treatment presents numerous advantages:
- Uses zero chemicals.
- Treatment of polluted air by the plants creates zero impact on the surrounding inhabitants.
- Landscaped integration.
- Low and easy maintenance.
- Economical comparing to other high energy consuming treatments.